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Abstract

In this paper, we outline our solution to the double inverted pendulum problem, wherein a double
pendulum is inverted and attached to a cart. The objective is to balance the double pendulum above the
cart by only exerting force on the cart. Our approach utilized the Linear Quadratic Regulator feedback
controller to exert optimal control on the cart and stabilize the system. We were successful in creating
a robust control system that balances the inverted double pendulum indefinitely regardless of initial
conditions on cart position or velocity, pendulum joint position or velocity, or pendulum tip position or
velocity.

1 Background

The problem investigated in this report is the upright stabilization of an inverted double pendulum. The
objective of the problem is to hold the double pendulum above a cart by moving the cart with the only
control available being force exerted on the cart to move it left or right. Given cart position and velocity,
joint position and angular velocity, and tip position and angular velocity, the system should choose the force
applied to the cart in order to optimize the total time that the double pendulum is stabilized above the cart.

The inverted double pendulum is a well-known problem in optimal control and reinforcement learning.
Much research has been done on this problem due to the simplicity of the system ideas and its easy acces-
sibility. Thus, many different approaches have been taken towards the problem including linear quadratic
regulators, the state-dependent Ricatti equation, neural network optimal control, a stabilization fuzzy con-
troller, harmonic balance identification, and bifurcation theory. While each of these methods has shown
some level of success, we will attempt to derive a solution to the problem from scratch using what we’ve
learned in this course.

2 Mathematical Representation
Figure 1: Double Inverted
Pendulum System[1]

Our goal is to keep the pendulum up as long as possible. Thus we seek a solution
that will maximize the potential energy of the system. Figure 1 illustrates our
system, although we will change some variable names and make additions to
clarify our problem.

We define our variables as follows:

• Cp - the position of the cart on the x-axis

• l1 - the length of the first pendulum

• l2 - the length of the second pendulum

• Jθ - the off vertical angle of the first pendulum, which we call the joint
angle

• Tθ - the off vertical angle of the second pendulum, which we call the tip
angle

• g - the force due to gravity
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• m1 - the mass of the joint

• m2 - the mass of the tip

• M - the mass of the cart

• t - time

• F - the force applied to the cart.

We make one simplifying assumption of the system. Namely, l1 = l2 = 1.
The functional that we will be observing is based on kinetic and potential energy. We wish to maximize

U−T or minimize T−U where T is kinetic energy an U is potential energy. Defining L to be our Lagrangian,
we get the functional

J(y) =

∫ tf

t0

Ldt (1)

where
L = T − U (2)

Now we must define T and U based on the variables we know and the control we have as well as external
forces.

First, we observe that the position of the cart, joint, and tip are given by (Cp, 0), (Cp − sin Jθ, cos Jθ),
and (Cp − sin Jθ − sinTθ, cos Jθ + cosTθ). Next, we break up the kinetic and potential energy into three
different parts, being the first pendulum, the second pendulum, and the cart. Then the total potential and
kinetic energies will be the sum of these three parts. The total potential and kinetic energies are given by

U = m1g cos Jθ + m2g(cos Jθ + cosTθ) (3)

and

T =
M

2
v2c +

m1

2
v21 + +

m2

2
v22

=
M

2
Ċp

2
+

m1

2
((Ċp − J̇θ cos Jθ)

2 − J̇θ sin2 Jθ)

+
m2

2
((Ċp − J̇θ cos Jθ − Ṫθ cosTθ)

2 + (−J̇θ sin2 Jθ − Ṫθ sin2 Tθ)
2).

(4)

3 Solution

We now use the model developed above to solve the system with a Linear Quadratic Regulator. To start,
we apply the Euler-Lagrange Equations to get the following equations:

F =
∂L

∂Cp
− d

dt

∂L

∂Ċp

0 =
∂L

∂Jθ
− d

dt

∂L

∂J̇θ

0 =
∂L

∂Tθ
− d

dt

∂L

∂Ṫθ
.

(5)

Since we want to stabilize the double pendulum vertically, we will use small angle approximation to
linearize our system around (Jθ, J̇θ) = (0, 0) and (Tθ, Ṫθ) = (0, 0). This simplifies our very messy Euler-
Lagrange equations considerably to get:
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F = (Mc + m1 + m1)C̈p − (m1 + m2)J̈θ −m2T̈θ

0 = (m1 + m2)(J̈θ − C̈p) + m2T̈θ − (m1 + m2)gJθ

0 = J̈θ + T̈θ − gTθ − C̈p.

(6)

Solving for C̈p, J̈θ, and T̈θ gives our equations of motion:

C̈p =
F + g(m1 + m2)Jθ(t)

M

J̈θ =
Fm1 −Mgm2Tθ(t) + g(Mm1 + Mm2 + m1(m1 + m2))Jθ(t)

Mm1

T̈θ =
g(m1 + m2)(Tθ(t) − Jθ(t))

m1
.

(7)

In order to use a Linear Quadratic Regulator, we wish to write our system in the form ẋ(t) = Ax(t) +
Bu(t), where

ẋ(t) =



Ċp
C̈p
J̇θ
J̈θ
Ṫθ
T̈θ

, x(t) =



Cp
Ċp
Jθ
J̇θ
Tθ
Ṫθ

, and u(t) = F .

This produces

A =



0 1 0 0 0 0

0 0 g(m1+m2)
M 0 0 0

0 0 0 1 0 0

0 0
g(Mm1+Mm2+m

2
1+m1m2

Mm1
0

−gm2

m1
0

0 0 0 0 0 1

0 0 −g(m1+m2)
m1

0 g(m1+m2)
m1

0


and B =



0
1

M
0
1

M
0
0


.

We can solve for Q and R with the equation L = xT (t)Qx(t) + uT (t)Ru(t). However, the Lagrangian
is very difficult to solve for analytically. As it turns out, as long as Q and R are positive semidefinite and
positive definite, the cost function has a unique minimum that can be obtained by solving the Algebraic
Riccati Equation. We simply choose Q to contain appropriate weights on the diagonal to penalize the state
variables and R a weight to penalize the control. We choose

Q =


5000 0 0 0 0 0

0 0 0 0 0 0
0 0 100 0 0 0
0 0 0 0 0 0
0 0 0 0 100 0
0 0 0 0 0 0

 and R =
[
1
]
.

With everything in the system defined, we employ the solve continuous are() function from SciPy’s
linear algebra module to get P such that

PA + ATP + Q− PBR−1BTP = 0. (8)
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From here, P can be used to solve for the optimal feedback gain. The feedback law for the Algebraic
Riccati Equation is given by

u = −R−1BTPx. (9)

We use a numerical root solver to find x at each time step such that

(A−BR−1BTP )x = 0 (10)

with the given initial conditions. Then our force at each time step is given by equation 9 with the calculated
values of x. This is our final solution.

4 Interpretation

Starting with any feasible initial conditions for our system (cart position, cart velocity, joint angle, joint
angular velocity, tip angle, and tip angular velocity), we can solve the associated Algebraic Riccati Equation
to get a solution to our infinite horizon problem. The solution optimizes potential energy for the system.
Thus, keeping the pendulum above the cart will always be the goal of the force we control. If the system
starts with a relatively vertical position, but a cart that has a velocity in some direction, the force we need
to exert will be to counteract the movement of the cart and return underneath the pendulum.
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The solutions assume that there is no random outside noise being added to the system, thus we can reach
a perfect balance of the pendulum in which the parts are practically stationary.

Different initial conditions will guarantee different optimal solutions. Given a cart that starts with the
pendulum below it, the cart will need to move in such a manner that the pendulum swings up, thus the
force will be sharp in one direction, then the other to move the cart quickly in opposing directions to swing
the pendulum up, then the system will mirror all other solutions and keep the pendulum balanced directly
above the cart, thus maximizing potential energy.
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Overall, we were impressed with how robust this LQR solution was. It was able to respond to any initial
conditions we threw at it and quickly stabilize the system.
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5 Appendix

All code for this project can be accessed in a Jupyter Notebook by contacting the authors.
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