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ABSTRACT. In this report, we present a new approach to atrial fibrillation (AF) detection. First, we
explore associated works detailing previous methods used to detect AF. We then provide summaries
of Physionet’s MIT-BIH Atrial Fibrillation Database and Computing in Cardiology Challenge 2017
Database and present results of our efforts to develop a robust model for detecting AF in electrocar-
diogram data using novel features based on RR intervals. Our contributions include a new feature
measuring irregularity of RR intervals and innovative applications of previous work to generate
novel features. Using a random forest classifier and 12 original features, we achieved accuracy of
0.963 and averaged F1-score of 0.962 with leave-one-person-out cross validation on the MIT-BIH
data. The same model achieved accuracy of 0.949 and averaged F1-score of 0.813 with 5-fold cross
validation on the 2017 Challenge data.

Keywords: Atrial Fibrillation, ECG, Electrocardiogram, R peak, RR Interval, AF
Detection, Cardiac Arrhythmia

1. Introduction

Atrial Fibrillation (AF) is a quick, irregular heartbeat that occurs when the atria (the upper
chamber of the heart) beats out of thythm. It is currently the most common cardiac rhythm disorder
and is known to greatly increase risk of heart failure and stroke (Shields and Lip, 2015)). Normal
heartbeats are initiated by an impulse from the Sinoatrial Node. Atrial Fibrillation can occur when
other electrical signals interfere with the impulse from the Sinoatrial node, causing the atria to
quiver. Wearable devices, such as smart watches, are equipped to measure heart rates and detect
atrial fibrillation. We aim to develop a robust model for real-time detection with novel features.

There are various methods for detecting AF, such as disappearance of P waves in an electrocar-
diogram (ECGQG), but these are often unreliable due to the chaotic nature of AF (Moody and Mark,
1983). Using portable or wearable devices it can be especially difficult to detect such smaller
changes to an ECG signal. The most reliable measure is that of RR intervals, the time passed
between the peaks of two R waves in an ECG. R waves are the largest waves present in a heartbeat
and thus the easiest to detect consistently. Several different methods of AF detection utilizing RR
intervals have been explored (Moody and Mark, 1983} [Lian et al., 2011} Tateno and Glass, 2000;
Duverney et al., [2002; |(Ghodrati et al., 2008}; Shouldice et al., 2007). We will present some results
of literature on this subject and conduct an analysis of the MIT-BIH Atrial Fibrillation Database
and the PhysioNet/Computing in Cardiology Challenge 2017 Database using new features for atrial
fibrillation detection. Our contributions in this paper include:

e Innovative features based on transitions described by Mark and Moody (Moody and Mark,
1983)

Received by the editors May 8, 2020.



2 D. Johnston

e A novel feature generalized from the Non-Empty Cell count described by Lian et al. (Lian
et al., 2011))
e A powerful new feature for measuring irregular irregularity in RR intervals.

In our discussion and future work, we also propose a new method for preprocessing and measuring
noise in an ECG signal.

2. Associated Work

It is difficult to detect AF based solely on RR interval length. The following papers propose some
methods for extracting features from RR interval data to fit an effective model for AF detection.
They do not all use the same dataset or the same ECG source (some use small, portable devices,
while others use data from professional grade equipment), or even the same metric for model
performance, so a comparison between the papers is difficult to make. In this section, a number of
methodologies and reported results are presented.

2.1. Moody and Mark Paper

Moody and Mark apply their methodology to ECG data that became the MIT-BIH Atrial Fib-
rillation Dataset (Moody and Mark, 1983 Goldberger et al., 2000). They classify RR intervals as
short, normal, or long by comparing each interval to a running mean at that point, given by

Rmean(i) = 0.75 * Rmean(i — 1) +0.25 x RR(i), (2.1)

for each RR interval, RR(i), that is shorter than 1.5 seconds. If the RR interval is within 15% of
the running mean, that is,

0.85 %« Rmean(i) < RR(i) < 1.15 % Rmean(i), (2.2)

then the interval is classified as normal. If it is smaller than this lower bound, it is considered short,
and if it is larger than the upper bound, it is considered long.

Moody and Mark then use these classes to construct a Markov model for the probabilities of
transitions between these intervals of different lengths. For example, the probability that the next
RR interval will be short given that the current RR interval is long. This would be considered a
long-to-short transition (LS). They found that ECG periods where AF is present display different
transition probabilities than ECG data of a normal heartbeat rhythm, or even ECG data where
arrhythmia other than AF is present.

Using this Markov model, they were able to achieve sensitivity of 0.900 with positive predictiv-
ity of 0.801. After implementing interpolation to reduce quantization error and a first-order filter to
remove noise from the signal, the model was able to achieve 0.961 sensitivity with 0.868 positive
predictivity (Moody and Mark, |1983)).

2.2. Tateno and Glass Paper

Tateno and Glass propose a new method of detecting AF (Tateno and Glass, 2000). They use
the same MIT-BIH AF database to develop their models. Instead of extracting features based on
the RR interval length relative to a running mean, they extract a new feature, ARR, the difference
between RR interval lengths. This is given by:

ARR(i) = RR(i) —RR(i — 1). (2.3)
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They then segment the data where AF is present into blocks of 100 heartbeats and create density
histograms for the average RR interval length within a block and for the average ARR value within
a block. These histograms serve as standard density histograms for AF.

To classify a given block of 100 heartbeats as AF or non-AF, they compare the density his-
tograms of RR and ARR for that block to the previously calculated standard density histograms
using the Kolmogorov-Smirnov test. If the tests results in a statistically significant similarity be-
tween the histograms (P = 0.01), the block is classified as AF. Otherwise, it is considered non-AF.

Sensitivity and specificity are reported. These metrics are defined by Sensitivity = TPZ% and
Specificity = %, where TP is the number of true positive predictions, TN is the number of
true negative predictions, FP is the number of false positive predictions, and FN is the number
of false negative predictions. Using the RR histograms, they achieve 0.539 sensitivity and 0.989
specificity on the dataset they used to construct the standard density histograms. Using a new
dataset, they attain 0.259 sensitivity and 0.932 specificity. Using the ARR histograms, they achieve
0.932 sensitivity and 0.967 specificity with the dataset used to construct the histograms. They
attain sensitivity of 0.888 and specificity of 0.641 for the new dataset (Tateno and Glass, [2000).
They mention some limitations of the paper; firstly, they do not optimize the number of beats in a
block. There may be more effective numbers than 100. In addition, they express concerns about
the rhythm assessment in the MIT-BIH database, as their analysis leads them to believe that some
portions of the data may have been poorly classified.

2.3. Lian et al. Paper

Lian et al. use the MIT-BIH AF database, as well as 3 other PhysioNet heart rhythm databases,
to evaluate model performance (Lian et al., [2011). In their 2011 paper, they endeavor to create a
metric that incorporates information from both the RR interval lengths and the difference between
consecutive RR interval lengths, ARR, as defined above by Tateno and Glass. They redefine this
metric as dRR in their paper, and that is how we refer to it in this paper.

Their algorithm for AF detection is based on the scatter plot of RR versus dRR. Segmenting the
data into intervals of 32, 64, or 128 RR intervals, they plot data points for one interval and measure
how spread out the data points are by dividing the resulting map into a grid with resolution 25 ms
and counting the number of non-empty cells in the grid.

If AF is present in the sample, the scatter plot is much more spread out due to the irregular
relationship between RR and dRR during atrial fibrillation, resulting in a higher number of non-
empty cells (NEC). Figure [2.1] displays an example illustration of the scatter plots. Clearly, if a
grid is drawn over the plots, the one with AF has many more non-empty grid cells than the plot
without AF present.

This metric divides the AF data from the non-AF data quite well. Over all the data, the best
results are achieved using segments of 128 RR intervals. The model achieves sensitivity of 0.959
and specificity of 0.954. At 0.958 sensitivity and 0.943 specificity, the segments of 64 RR intervals
perform almost as well.

2.4. Clifford et al. Paper

The PhysioNet/Computing in Cardiology Challenge 2017 focused on determining whether a
short interval (9-61 seconds) of ECG recording is classified as atrial fibrillation, normal, other
rhythm, or noise (Clifford et al., 2017). This paper presents an overview of this challenge and the
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FIGURE 2.1. Scatter Plots of RR vs dRR in MIT-BIH Data

results, including results achieved through combining a number of the top models through voting
techniques.

The models are scored by averaging the F1-scores for the normal, AF, and other classes. For
each class, the F1-score is defined to be:

2pr

Fl= ,
p+r

(2.4)

where p is precision and r is recall. Note precision is defined by p = % and recall is defined by

r= TPCF—PFN, which is equivalent to sensitivity. The top-performing models have averaged F1-scores
that round to 0.83. The highest score of 0.868 is achieved by weighted voting of 45 algorithms.

2.5. Behar et al. Paper

In their publication based on their entry in the 2017 competition, Behar et al. describe their
method and results (Behar et al., 2017). They extract a wide variety of features describing signal
quality, predictability of the RR intervals, ECG morphology, and heart rate variability. They em-
ploy dozens of features, but the cascaded approach they use is the most interesting component of
their paper.

They train three Support Vector Machines (SVM) with Radial Basis Function (RBF) kernels
to be used for classification. The first distinguishes between normal rhythms and rhythms that
were not normal. The second differentiates the not normal rhythms into AF rhythms and non-AF
rhythms. The third determines if the remaining rhythms are other rhythms or simply noise.

This cascaded approach placed well in the competition, resulting in an Fl-score of 0.80 on the
final test set in the 2017 Challenge (Behar et al., 2017).
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3. Atrial Fibrillation Datasets

In this paper, we consider two data sets that have been applied for AF detection in our studies:
The MIT-BIH Atrial Fibrillation Database, which we refer to as the “MIT-BIH Data,” and the Phy-
sioNet/Computing in Cardiology (CinC) Challenge 2017 Data, which we refer to as the “Challenge
Data.”

3.1. The MIT-BIH Data

The MIT-BIH Atrial Fibrillation Database contains 10 hours of dual-lead ECG recordings for 25
subjects (Moody and Mark, [1983};|Goldberger et al.,[2000). Two of these subjects do not have com-
plete data files, so they are not used for our studies in this paper. These recordings are sampled at
250 Hz and contain annotations by medical experts indicating the heart rhythm being experienced.
Rhythm types include Normal (N), Atrial Fibrillation (AF), Atrial Flutter (AFL), and Junctional
Rhythm (J). For our purposes, we relabel these rhythms as AF or non-AF by grouping AFL, N,
and J rhythms together in the non-AF group. The annotations also indicated the sample number of
the peak of the R wave for each heartbeat. This information was used to extract the RR interval
lengths for all of the data, which were then used to extract new features to be used in our studies.

3.2. The Challenge Data

The PhysioNet/Computing in Cadiology Challenge 2017 focused on classifying a short interval
(9-61 seconds) of ECG recording as one of four cardiac rhythm types (Clifford et al.,[2017). The
dataset used in this challenged is composed of 12,186 ECGs and was collected using a small,
portable device. Of the ECGs, 8,528 were made available as a public training set, while 3,658
were retained as a private, hidden test set. A subset of 300 ECGs from the public training set are
included as a public validation set.

The main differences between the Challenge Data and the MIT-BIH Data include that the Chal-
lenge Data was generated with single-lead, portable devices, not professional-grade medical equip-
ment, and that the Challenge Data was segmented beforehand and not given as 10 hours of constant
ECG recording for each subject. These segments were annotated as AF (A), Normal (N), Other
(O), or Noise (~), but there were no RR interval annotations given, unlike the MIT-BIH Data.
Figure [3.1]displays the distribution of rhythms present in the Challenge data.
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It is clear that there is a much more severe imbalance in the data here than was present in the
MIT-BIH dataset. Normal rhythms are by far the most numerous, followed by Other Rhythms.
Figure [3.2] shows the distribution when we only consider AF versus Non-AF rhythms. Each seg-
ment has been expertly labeled as one of the four rhythms indicated above; any rhythm that is not
AF has been placed in the Non-AF group.

4. Data Preprocessing

Preliminary processing of the data was conducted using Python 3.6.8 (Python Software Foun-|
11991)). This included formatting and segmenting the data, as well as testing peak-detection
algorithms.

4.1. Preprocessing the MIT-BIH Data

By using Python’s Waveform Database (WFDB) package, the ECG signals were extracted and
visualized, and the R peak annotations were extracted for each of the 23 subjects of the MIT-BIH
dataset (Python Software Foundation, 1991}, Xie et al., [2016). This data is given as one 10-hour-
long segment for each subject, but we wish to be able to identify AF in real time with as little as 30
seconds of data available. With that in mind, the data was segmented into 27,017 signals of length
30 seconds. Each segment was then classified as AF or Non-AF depending on the rhythm present
in the majority of the segment. As there are expert annotations indicating the rhythm type present
at every sample in the ECG, a majority vote is taken to determine if a segment is AF or Non-AF. If
the majority of the samples in the segment are marked AF, the segment is marked AF. Otherwise it
is marked Non-AF. Figure .1] displays the distribution of those classes across the whole dataset.
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FIGURE 4.1. MIT-BIH Data: Rhythm Distribution

As the data has already annotated by medical professionals and we did not need to extract R-
wave peaks from the signal, there was little preprocessing to be done regarding signal quality
(Moody and Markl, [1983; |Goldberger et al., 2000). At the beginning of a recording, there could
be small amounts of noise present in the signal, so the first 90 seconds of each ECG signal were
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not used in the segmenting process. The MIT-BIH data was segmented into 27,017 segments from
which to extract predictive features and other desired information.

4.2. Preprocessing the Challenge Data

The WFDB library that has been developed in a variety of programming languages provides
multiple methods for detecting peaks of R waves (Xie et al., [2016). In the Python package, we
made use of the GQRS and XQRS detectors to extract this data from each segment (Xie et al.,
2016). Each algorithm has strengths and weaknesses, and we ran into some problems attempting
to extract these peaks of R waves. For example, on one normal segment, we see the results of both
algorithms in Figure [d.2] Each red x marks where the algorithm labels an R wave peak. It is clear
from the figure that the XQRS algorithm has labeled this segment much more precisely than the
GQRS algorithm.
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FIGURE 4.2. Labeling R Wave Peaks: GQRS vs XQRS

Initially, it appears that the XQRS algorithm is a much better choice for peak detection. How-
ever, when dealing with noise or spikes in the ECG data, the GQRS algorithm is much more robust
than the XQRS algorithm. In Figure .3 we can see the results of the two algorithms when given a
segment that is labeled as normal, but has one brief spike in the data.
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FIGURE 4.3. GQRS Outperforms XQRS with Spikes in ECG
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The beginning of the reading has some noise in it, but the last 8000 samples are read properly
and show regular heart rhythms. The GQRS algorithm detects this fairly well, while the XQRS
algorithm performs horrendously, failing to pick up any peaks after the very large spike at the
beginning of the data. This is because the XQRS algorithm is an adaptation of the Pan-Tompkins
algorithm and depends on a running mean of the peak altitudes, so a large spike can throw off peak
detection for the rest of the signal (Pan and Tompkins, |1985).

Many other segments marked as noise did not yield any results from the algorithms, making it
difficult to extract features as there were no RR intervals given by the data. Figure .4 shows what
these segments of “noise” can look like and what the algorithms attempt to classify as R wave
peaks.
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FIGURE 4.4. Example of a Segment of Noise

Because the GQRS algorithm performed more consistently in the presence of noise, it was se-
lected to produce initial results. If fewer than 5 heartbeats were detected using this algorithm, the
segment was not included in the training of the model as no reliable features based on R peaks
could be extracted from it.

5. Feature Extraction

A variety of features were extracted from the R peaks of the ECG data. This section describes
a feature used to measure signal quality, one original feature created to measure irregularity in the
heartbeat, and innovative ideas to apply the findings of the some of the authors mentioned in the
Associated Work section to generate new features.

5.1. Innovative Features Based on RR Interval Transitions

Moody and Mark developed classifications for transitions between different RR interval lengths
and used these transitions to build a Markov model (Moody and Mark, 1983)). Instead of building a
Markov model, we propose an innovative idea to apply these transitions as predictive features. For
each segment of ECG data, the proportion of the transitions that belong to each class are calculated
and used as features. These features are labeled SL for short to long transition, LN for long to
normal transition, etc.

Figure|5.1|presents an illustration of the average transition proportions in a segment using all 23
subjects of the MIT-BIH data. Table [I1.1]in the appendix provides a numerical summary. Note
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the vastly different transition proportions in AF and Non-AF segments. As expected, the irregular
AF data has a considerably smaller proportion of NN transitions. This holds true for the Challenge
Data also, as shown in Figure[5.2and Table [I1.2]in the appendix. These transitions are consistent
across databases in the differences between AF and Non-AF segments.

5.2. NEC Rate

The non-empty cell (NEC) feature has been shown in Lian et al., 2011 to be an effective measure
of irregularity to be used in AF detection (Lian et al., 2011). However, this feature requires a fixed
number of heartbeats in each segment. We wish to develop a feature that can be used for a fixed
amount of time instead of a fixed amount of heartbeats. We extend NEC to a new feature, NEC
Rate, which is calculated by simply dividing the NEC feature by the number of heartbeats in the
segment. The histograms presented in Figure [5.3] demonstrate how well the NEC Rate feature
separates the AF segments from the Non-AF segments.
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FIGURE 5.3. Histogram of NEC Rate
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It is imperfect, but there is a clear trend evident in the histograms. When atrial fibrillation is
present, the NEC Rate is more likely to be high. The trend is much clearer with the MIT-BIH data
because it is predominantly AF and normal rhythms. There are many other rhythms types in the
Challenge Data that may present different challenges in AF detection. We see a larger overlap in
the histograms of the challenge data, which reflects similarities between R-wave patterns in AF
rhythms and Other rhythms that are not present in normal rhythms. The histograms are normalized
to account for the imbalance in the dataset.

5.3. Utilizing Signal Quality Index as a Feature

There are a variety of Signal Quality Indices (SQIs) that have been developed to measure the
quality of a signal. One SQI that can be implemented with only information on R peaks is called
bSQI (Liu et al.l 2018). As discussed previously, the XQRS and GQRS detectors perform very
differently from one another. The bSQI metric compares the results from both detectors to establish
a measure of signal quality. It calculates the proportion of R peaks that both detectors identify. If
N is the number of R peaks that the first detector identifies, and N, is the number of R peaks that
the second detector identifies, bSQI is given by

min(Ny,N;)

bSQl = ———=.
Q max(Nl,Nz)

(5.1)

Because the MIT-BIH data has been annotated by experts, bSQI was only used on the Challenge
data. bSQI is used as a measure of how well the algorithms agree on where the R peaks are, so
it cannot be used on the MIT-BIH data because the location of the R peaks is already provided.
Employing bSQI as a feature improved model performance.

5.4. A Novel Feature for Measuring Irregular Irregularity

In an effort to measure irregularity in the RR intervals, we developed a novel feature called
ddRR, which makes use of the dRR values that Lian et al. used. For any given segment of ECG
data, ddRR is calculated to be the mean absolute value of the differences between consecutive dRR
values. For a segment with n dRR values, this can be written as

1 n
ddRR = —— Y |dRR; — dRR;_i|. (5.2)
n—1i=

This new value shows promise as a predictive feature. In fact, ddRR gave the highest feature
importance of any feature used on the Challenge Data, as shown in Table

6. Experiment Design and Methodology

In this section, we present important elements of our methodology, including model selection
and the use of feature importance to reduce dimensionality for additional testing. For model per-
formance, we employ cross validation to get results. Because the MIT-BIH data is taken from 23
individual subjects, leave-one-out cross validation is used. 5-fold cross validation to get results on
the Challenge data as it has unique subjects for each segment.
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6.1. Model Selection

After extracting the features described above, we consider a variety of statistical learning meth-
ods in our preliminary studies. We compared performances of SVMs with linear and RBF ker-
nels, linear discriminant analysis (LDA), logistic regression, gradient boosting, and random forest
models. The predominant measures of model performance were accuracy and averaged F1-score.
These metrics were chosen because the 2017 Physionet Challenge used an averaged F1-score as
their metric for performance. They only averaged the Fl-scores for the normal, other, and AF
classes, ignoring the Fl-score for noise. Preliminary results showed comparable performance
across these models, as shown in Table[6.1]

TABLE 6.1. Preliminary Model Results with MIT-BIH Data

Accuracy FI1-Score
Random Forest 0.964 0.963
Gradient Boosting 0.963 0.962
SVM with RBF Kernel 0.955 0.953
SVM with Linear Kernel | 0.953 0.951
LDA 0.952 0.950
Logistic Regression 0.951 0.949

Random forest and gradient boosting slightly outperformed the other models. The random forest
model was chosen for the purposes of this paper as it does not require normalization of data.
Futhermore, it can be easily modified to account for imbalanced data through weights, and it can
be easily generalized to multiple classes. Its utilization of bootstrap aggregation helps to reduce
variance, and it provides a method to compare selected features through Gini Importance while
avoiding exorbitant computation cost.

6.2. Feature Importance

Through fitting a random forest model to both the MIT-BIH data and the Challenge data, we
were able to gather information on feature importance for each dataset. Table [6.2] displays the
results. These feature importances are calculated as “Gini Importance,” or Mean Decrease in Im-
purity. This is defined as the total decrease in impurity at each node weighted by the probability of
reaching that node and averaged over every tree in the random forest (Breiman et al., |1984).

These feature importances were helpful in determining which features had the greatest impact
on the performance of the model. This knowledge can be useful for dimension reduction. With
the MIT-BIH data, we observe that the NL feature has a much higher importance than the other
transitions. This led us to experiment with using only the NL feature in place of all 9 transition
features, which drastically reduces complexity of the model while sacrificing minimal information
and performance.

7. Results

In this paper, we present final performance results using both the MIT-BIH dataset and the
Challenge dataset. Table|/.1|displays the results for each dataset using all features, while Table[7.2
displays results using only the NL transition, NEC Rate, ddRR, and bSQI. Binary Challenge Data
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TABLE 6.2. Feature Importances

Feature MIT-BIH Data 2017 Challenge Data
SS 0.008 0.064
NS 0.020 0.089
LS 0.030 0.029
SN 0.129 0.059
NN 0.070 0.095
LN 0.096 0.069
SL 0.014 0.055
NL 0.308 0.068
LL 0.007 0.042
NEC Rate 0.270 0.166
ddRR 0.047 0.259

refers to only considering AF versus Non-AF, while Multiclass Challenge Data includes all four
original classes: N, O, A, and ~.

TABLE 7.1. Performance Results Using All Features

‘ Accuracy FI1-Score
Binary MIT-BIH Data 0.964 0.963
Binary Challenge Data 0.949 0.813
Multiclass Challenge Data | 0.752 0.704

We learned from studying the feature importances that the NL transition has greater impact
on model performance than the other transitions. We tested the model using only this transition
instead of all 9 transition features and saw only a small drop of 0.002 in accuracy and F1-Score
for the MIT-BIH data. There was a larger drop in performance when using the Challenge data.
For binary Challenge data, accuracy decreased by 0.015 while F1-Score decreased by 0.050. For
multiclass Challenge data, accuracy decreased by 0.047 and F1-Score decreased by 0.062.

TABLE 7.2. Performance Results with 4 Features

| Accuracy F1-Score
Binary MIT-BIH Data 0.962 0.961
Binary Challenge Data 0.934 0.763
Multiclass Challenge Data | 0.705 0.642

This dimension reduction was particularly useful with the MIT-BIH dataset. Accuracy and F1-
Score only dropped by 0.002, while computational complexity was significantly reduced. The run
time for the model across the MIT-BIH data was reduced from 6 minutes and 11 second, to 4
minutes and 9 seconds.

Performance was considerably lower on the Challenge data for a variety of reasons. For binary
classification, the Challenge Data was much more imbalanced. Furthermore, there were more mis-
takes in R-wave detection with the Challenge data because it was not validated and annotated by
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medical professionals. Also, in the MIT-BIH data, the ECG signals were almost entirely normal
rhythms or AF rhythms, while a variety of other, unlabeled arrhythmia are present in the Challenge
data along with noise. Any type of atrial arrhythmia, junctional arrhythmia, or ventricular arrhyth-
mia that is not AF is grouped into one class of “Other” rhythms. Some of these other rhythms have
similar R-wave patterns to the AF rhythms, while some have similar R-wave patterns to normal
rhythms, making classification methods based on RR intervals alone less effective. The multiclass
classification problem is a much more challenging problem to solve, as is evident from the much
lower performance measures. Effectively solving this problem will require more than features
based on RR interval alone. Frequency-based features and features extracted from information
from P, Q, S, and T waves of ECG signals may contribute to a more accurate model (Behar et al.,
2017; Datta et al., 2017).

8. Conclusion

The MIT-BIH data provided a well-controlled environment in which to tests the efficacy of
features for distinguishing atrial fibrillation from normal heart rhythms. Using the novel features
defined in this paper as well as bSQI for the Challenge data, a random forest model performed
well at identifying both normal and AF rhythms. Three well-chosen features based only on RR
intervals are sufficient to distinguish between normal and AF ECG signals as small as 30 seconds
long with over 0.960 accuracy.

However, as the model transitioned to the Challenge data, performance dropped. With other
types of cardiac rhythms present it became much more difficult to identify the AF rhythms. Other
forms of arrhythmia share similar patterns of RR intervals with AF. While the features defined in
this paper are effective at identifying AF from normal rhythms, it will likely require features based
on more than RR intervals to effectively classify between a variety of rhythms types, such as those
in the Challenge data.

9. Discussion and Future Work

While using the 2017 Challenge data it became clear that much more work in preprocessing
would be required to produce excellent results. A brief foray into signal processing helped shed
light on possible methods to classify noisy signals, reduce noise within a signal, and identify further
features to be used in modeling.

As discussed previously, the WFDB package provides two QRS detector algorithms. As the
XQRS detector did not seem to be robust to brief instances of noise, the GQRS detector was used
to detect R peaks. However, Behar et al. and Datta et al. achieved much better results using
variations on the Pan-Tompkins algorithm for R peak detection, which is what the XQRS detector
is based on (Behar et al., 2017; Datta et al., 2017). We found an open-source implementation of the
Pan-Tompkins algorithm, translated it to Python, and adapted it for our needs. This helped to gain
a greater understanding of what the algorithm was doing to identify R peaks. Figure [9.1] displays
different steps of the algorithm performed on a Normal heart rthythm of length 10 seconds. In the
top left, the raw ECG signal is presented, followed by its derivative in the top right for comparison.
The first step is to impose a band pass filter on the raw signal, as shown in the middle left subplot.
A derivative filter is then performed by convolution on the resulting data, displayed in the middle
right plot. The bottom left plot shows the resulting signal squared. The squared signal is then
averaged with a moving window of length 30 samples, which is shown in the bottom right plot.
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FIGURE 9.1. Example of Pan-Tompkins on Normal Rhythm

From here, a peak detector is used on the final signal, and a process based on iteratively updating
thresholds is performed to determine if the peaks detected are, in fact, R peaks. Outlining this
process visually and testing it with outlier signals helped in the development of ideas for detecting
and removing noise in a signal during this R peak detection process.

The Pan-Tompkins algorithm performs well in the presence of baseline wander or low-amplitude
noise within a signal, but is not robust to large spikes in the signal. With that in mind, the raw ECG
signal can be analyzed before running the peak detection algorithm in an attempt to recognize and
ignore large spikes in the data. An ECG recording rarely as QRS complex amplitude greater than
1 mV, with the maximum for a human heartbeat at around 3 mV. In this section, a method for
discounting large spikes due to noise is proposed.

First, using a simple peak finder with a moving window of 100 samples, identify the number of
peaks present in a segment and the absolute value of their amplitudes. If there are fewer than 10
peaks identified, this is insufficient and the segment is discarded. If the mean of the peaks is greater
than 2, perform the Pan-Tompkins algorithm without removing any noise. If the mean is lower than
2, then we will treat any peak higher than 2 as an anomaly and consider the region around it to be
noise and flatten it before performing the Pan-Tompkins algorithm. Then peaks can be properly
identified without disturbance from large spikes due to noise. The median RR interval length is
calculated from this peak data and the areas that were flattened are imputed with RR intervals of
the median RR interval length.

These peak locations can then be used to segment the signal into individual heartbeats. By
comparing each heartbeat to every other heartbeat in the signal, each heartbeat will receive a value
indicating how noisy it is. The heartbeats that are most different from the rest of the heartbeats in
the signal are considered the most noisy.

We look forward to implementing this idea to test its effectiveness in noise detection and accurate
peak identification.
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11. Appendix

TABLE 11.1. Average Proportions of Transitions per segment in MIT-BIH Dataset

SS SN SL NS NN NL LS LN LL
AF 0.046 0.104 0.048 0.106 0.425 0.099 0.045 0.101 0.025
Non-AF | 0.004 0.009 0.021 0.025 0.909 0.004 0.005 0.020 0.003

TABLE 11.2. Average Proportions of Transitions per segment in Challenge Dataset

SS SN SL NS NN NL LS LN LL
AF 0.045 0.088 0.044 0.091 0.471 0.099 0.046 0.092 0.024
Non-AF | 0.022 0.016 0.026 0.030 0.829 0.018 0.013 0.028 0.018
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